6,261 research outputs found

    Magnetic order in the quasi-two-dimensional easy-plane XXZ model

    Full text link
    A Green's-function theory of antiferromagnetic short-range and long-range order (LRO) in the S=1/2S=1/2 quasi-two-dimensional easy-plane XXZ model is presented. As the main new result, {\it two} phase transitions due to the combined influence of spatial and spin anisotropy are found, where below the higher and lower N\'{e}el temperature there occurs LRO in the transverse and in both the transverse and longitudinal spin correlators, respectively. Comparing the theory with neutron-scattering data for the correlation length of La2CuO4\rm La_2CuO_4, a very good agreement in the whole temperature dependence is obtained. Moreover, for La2CuO4\rm La_2CuO_4, Sr2CuO2Cl2\rm Sr_2CuO_2Cl_2, and Ca0.85Sr0.15CuO2\rm Ca_{0.85}Sr_{0.15}CuO_2 the second phase with longitudinal LRO is predicted to appear far below room temperature.Comment: 7 pages, 5 figure

    Spectral stability of noncharacteristic isentropic Navier-Stokes boundary layers

    Full text link
    Building on work of Barker, Humpherys, Lafitte, Rudd, and Zumbrun in the shock wave case, we study stability of compressive, or "shock-like", boundary layers of the isentropic compressible Navier-Stokes equations with gamma-law pressure by a combination of asymptotic ODE estimates and numerical Evans function computations. Our results indicate stability for gamma in the interval [1, 3] for all compressive boundary-layers, independent of amplitude, save for inflow layers in the characteristic limit (not treated). Expansive inflow boundary-layers have been shown to be stable for all amplitudes by Matsumura and Nishihara using energy estimates. Besides the parameter of amplitude appearing in the shock case, the boundary-layer case features an additional parameter measuring displacement of the background profile, which greatly complicates the resulting case structure. Moreover, inflow boundary layers turn out to have quite delicate stability in both large-displacement and large-amplitude limits, necessitating the additional use of a mod-two stability index studied earlier by Serre and Zumbrun in order to decide stability

    The Origin of Jovian Planets in Protostellar Disks: The Role of Dead Zones

    Full text link
    The final masses of Jovian planets are attained when the tidal torques that they exert on their surrounding protostellar disks are sufficient to open gaps in the face of disk viscosity, thereby shutting off any further accretion. In sufficiently well-ionized disks, the predominant form of disk viscosity originates from the Magneto-Rotational Instability (MRI) that drives hydromagnetic disk turbulence. In the region of sufficiently low ionization rate -- the so-called dead zone -- turbulence is damped and we show that lower mass planets will be formed. We considered three ionization sources (X-rays, cosmic rays, and radioactive elements) and determined the size of a dead zone for the total ionization rate by using a radiative, hydrostatic equilibrium disk model developed by Chiang et al. (2001). We studied a range of surface mass density (Sigma_{0}=10^3 - 10^5 g cm^{-2}) and X-ray energy (kT_{x}=1 - 10 keV). We also compared the ionization rate of such a disk by X-rays with cosmic rays and find that the latter dominate X-rays in ionizing protostellar disks unless the X-ray energy is very high (5 - 10 keV). Among our major conclusions are that for typical conditions, dead zones encompass a region extending out to several AU -- the region in which terrestrial planets are found in our solar system. Our results suggest that the division between low and high mass planets in exosolar planetary systems is a consequence of the presence of a dead zone in their natal protoplanetary disks. We also find that the extent of a dead zone is mainly dependent on the disk's surface mass density. Our results provide further support for the idea that Jovian planets in exosolar systems must have migrated substantially inwards from their points of origin.Comment: 28 pages, 10 figures, accepted by Ap

    Mobility gap in intermediate valent TmSe

    Full text link
    The infrared optical conductivity of intermediate valence compound TmSe reveals clear signatures for hybridization of light dd- and heavy f-electronic states with m* ~ 1.6 m_0 and m* ~ 16 m_0, respectively. At moderate and high temperatures, the metal-like character of the heavy carriers dominate the low-frequency response while at low temperatures (T_N < T < 100 K) a gap-like feature is observed in the conductivity spectra below 10 meV which is assigned to be a mobility gap due to localization of electrons on local Kondo singlets, rather than a hybridization gap in the density of states

    Artificial selection on walking distance suggests a mobility-sperm competitiveness trade-off

    Get PDF
    Securing matings is a key determinant of fitness, and in many species, males are the sex that engages in mate searching. Searching for mates is often associated with increased mobility. This elevated investment in movement is predicted to trade-off with sperm competitiveness, but few studies have directly tested whether this trade-off occurs. Here, we assessed whether artificial selection on mobility affected sperm competitiveness and mating behavior, and if increased mobility was due to increased leg length in red flour beetles (Tribolium castaneum). We found that, in general, males selected for decreased mobility copulated for longer, stimulated females more during mating, and tended to be better sperm competitors. Surprisingly, they also had longer legs. However, how well males performed in sperm competition depended on females. Males with reduced mobility always copulated for longer than males with high mobility, but this only translated into greater fertilization success in females from control populations and not the selection populations (i.e. treatment females). These results are consistent with a mate-searching/mating-duration trade-off and broadly support a trade-off between mobility and sperm competitiveness

    Non-Perturbative Spectrum of Two Dimensional (1,1) Super Yang-Mills at Finite and Large N

    Get PDF
    We consider the dimensional reduction of N = 1 SYM_{2+1} to 1+1 dimensions, which has (1,1) supersymmetry. The gauge groups we consider are U(N) and SU(N), where N is a finite variable. We implement Discrete Light-Cone Quantization to determine non-perturbatively the bound states in this theory. A careful analysis of the spectrum is performed at various values of N, including the case where N is large (but finite), allowing a precise measurement of the 1/N effects in the quantum theory. The low energy sector of the theory is shown to be dominated by string-like states. The techniques developed here may be applied to any two dimensional field theory with or without supersymmetry.Comment: LaTex 18 pages; 5 Encapsulated PostScript figure

    Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles

    Get PDF
    PEGylated gold nanoparticles are decorated with various amounts of human transferrin (Tf) to give a series of Tf-targeted particles with near-constant size and electrokinetic potential. The effects of Tf content on nanoparticle tumor targeting were investigated in mice bearing s.c. Neuro2A tumors. Quantitative biodistributions of the nanoparticles 24 h after i.v. tail-vein injections show that the nanoparticle accumulations in the tumors and other organs are independent of Tf. However, the nanoparticle localizations within a particular organ are influenced by the Tf content. In tumor tissue, the content of targeting ligands significantly influences the number of nanoparticles localized within the cancer cells. In liver tissue, high Tf content leads to small amounts of the nanoparticles residing in hepatocytes, whereas most nanoparticles remain in nonparenchymal cells. These results suggest that targeted nanoparticles can provide greater intracellular delivery of therapeutic agents to the cancer cells within solid tumors than their nontargeted analogs

    The Importance of Disk Structure in Stalling Type I Migration

    Full text link
    As planets form they tidally interact with their natal disks. Though the tidal perturbation induced by Earth and super-Earth mass planets is generally too weak to significantly modify the structure of the disk, the interaction is potentially strong enough to cause the planets to undergo rapid type I migration. This physical process may provide a source of short-period super-Earths, though it may also pose a challenge to the emergence and retention of cores on long-period orbits with sufficient mass to evolve into gas giants. Previous numerical simulations have shown that the type I migration rate sensitively depends upon the circumstellar disk's properties, particularly the temperature and surface density gradients. Here, we derive these structure parameters for 1) a self-consistent viscous-disk model based on a constant \alpha-prescription, 2) an irradiated disk model that takes into account heating due to the absorption of stellar photons, and 3) a layered-accretion disk model with variable \alpha-parameter. We show that in the inner viscously-heated regions of typical protostellar disks, the horseshoe and corotation torques of super-Earths can exceed their differential Lindblad torque and cause them to undergo outward migration. However, the temperature profile due to passive stellar irradiation causes type I migration to be inwards throughout much of the disk. For disks in which there is outwards migration, we show that location and the mass range of the "planet traps" depends on some uncertain assumptions adopted for these disk models. Competing physical effects may lead to dispersion in super-Earths' mass-period distribution.Comment: 12 pages, Submitted to Ap

    Analysis of terrestrial planet formation by the grand tack model:system architecture and tack location

    Get PDF
    The Grand Tack model of terrestrial planet formation has emerged in recent years as the premier scenario used to account for several observed features of the inner solar system. It relies on early migration of the giant planets to gravitationally sculpt and mix the planetesimal disc down to ~1 AU, after which the terrestrial planets accrete from material left in a narrow circum-solar annulus. Here we have investigated how the model fares under a range of initial conditions and migration course-change (`tack') locations. We have run a large number of N-body simulations with a tack location of 1.5 AU and 2 AU and tested initial conditions using equal mass planetary embryos and a semi-analytical approach to oligarchic growth. We make use of a recent model of the protosolar disc that takes account of viscous heating, include the full effect of type 1 migration, and employ a realistic mass-radius relation for the growing terrestrial planets. Results show that the canonical tack location of Jupiter at 1.5 AU is inconsistent with the most massive planet residing at 1 AU at greater than 95% confidence. This favours a tack farther out at 2 AU for the disc model and parameters employed. Of the different initial conditions, we find that the oligarchic case is capable of statistically reproducing the orbital architecture and mass distribution of the terrestrial planets, while the equal mass embryo case is not.Comment: Accepted for publication in The Astrophysical Journa
    • …
    corecore